
 

 

 

Automated Measurement of Vowel Formants in the Buckeye Corpus 

Yao Yao
1
, Sam Tilsen

2
, Ronald L. Sprouse

1
, and Keith Johnson

1
 

1
University of California, Berkeley 

2
University of Southern California 

 

Abstract:  In recent years, corpus phonetics has become a rapidly expanding 

field.  However, the lack of appropriate tools for automatic acoustic analysis 

hinders further development of the field.  In this paper, we present a 

methodological study on the automatic extraction of vowel formants using both 

robust linear predictive coding (RLPC; Lee, 1988) and dynamic formant tracking 

(Talkin, 1987).  Acoustic data were taken from the Buckeye corpus of English 

conversations.  We varied two aspects of the analysis - preemphasis and LPC 

order - to optimize formant tracking results by speaker and vowel.  We also 

show, based on the optimal results, the distribution of ten English vowels in the 

F1/F2 space in conversational speech.   

 

Keywords:  speech corpus, automatic acoustic analysis, vowel formants, Robust 

LPC 

1.  Introduction  

1.1.  Background 

      With the development of various speech corpora in recent years (e.g. Switchboard corpus 

of telephone speech, TIMIT speech database, Buckeye corpus of conversational speech), a 

new trend has emerged in the field of phonetic research, which involves large-scale 

quantitative analysis of acoustic corpus data.  Compared with experimental methods, this 

new line of research, which is often termed “corpus phonetics”, features the use of larger and 

more realistic phonetic datasets as well as more sophisticated data analysis.  Over the past 

couple decades, the new methodology has produced a fast growing body of literature on 

various topics including phonetic variation (Byrd 1994; Keating et al, 1994; Raymond et al, 

2006; Bell et al., 2003, 2009, etc), speech tempo (Fosler-Lussier and Morgan, 1999; Yuan et 

al., 2006; Jacewicz et al., 2009, etc), disfluency in natural speech (Shriberg, 2001, etc) and so 

on.    

      A classic paper by Keating et al. (1994) presented two case studies using the TIMIT 

speech database.  One of their studies was based on the non-audio part of the corpus (i.e. 

speaker information, temporal and segmental transcriptions) and investigated durational 

variation and vowel alternation in the pronunciation of the word the.  The other study 

analyzed audio data from the corpus and tested the effect of following vowels on the 

articulation of velar stops.  However, this balanced use of audio and non-audio data has not 

been pursued in later studies, as non-audio transcriptions have been far more frequently 

consulted than audio data.  As a result, most corpus analyses have concentrated on segmental 

duration and alternation, but little has been learned about more fine-grained phonetic detail, 

such as VOT and vowel formants.   
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      The scarcity of corpus acoustic analysis is tied to the lack of appropriate tools for 

extracting acoustic information from speech corpora.  A major challenge is the variability in 

the signal.  Compared with single word production, words in connected speech have more 

variable forms due to the influence of context.  In addition to the phonetic context, 

predictability also plays an important role: words in more predictable contexts are more 

prone to phonetic reduction than those in less predictable contexts (Bell et al, 2003, 2009).  

Moreover, a speech corpus usually contains speech samples from multiple speakers, which 

will introduce a great deal of inter-speaker variation, due to physiological differences, social 

factors and idiosyncratic articulatory patterns in individual speakers.  Thus an ideal analysis 

should work reasonably well across a wide range of conditions.  Another concern is 

measurement accuracy.  Most of the current automatic acoustic analyses have been 

developed for speech recognition and synthesis.  Since these methods are often application-

oriented (e.g. categorizing voiced and voiceless stops instead of survey the distribution of 

VOT), they in general have lower requirement for accuracy, which makes them less ideal for 

corpus phonetics studies.   

      In this paper, we attempt to fill this gap by presenting a methodological study on the 

automatic extraction of vowel formants from a speech corpus.  The main procedure involves 

robust LPC (RLPC) analysis (Lee, 1988), which augments traditional LPC by iterative 

reweighting of the signal, and dynamic formant tracking (Talkin, 1987), which tracks speech 

formant frequencies using dynamic programming.   The goal of the current study is twofold.  

First, we would like to showcase the use of RLPC on a large speech corpus.  Compared with 

conventional LPC analysis, RLPC offers significant improvement by modeling the glottal 

source in a more sophisticated way.  In this paper, we will discuss in detail the 

implementation, evaluation and optimization of RLPC on speech corpora.   Second, it is also 

our goal to survey the distribution of vowel formants in spontaneous speech and compare 

with previous results from word production in isolation (Hillenbrand et al., 1995).  

      The remainder of this paper is organized as follows.  The rest of this section is a brief 

introduction to the RLPC algorithm.  Section 2 describes the dataset and the implementation 

and optimization of the formant analysis.   Section 3 presents the measurement results based 

on the optimal formant analysis and shows the distribution of vowels across speakers.  

Section 4 concludes with a brief summary of the current study. 

 

1.2.  Robust LPC algorithm 

      Linear predictive coding (LPC) is currently the most widely used method for finding 

formants in the spectra.  For voiced speech it assumes an autoregressive model, in which the 

sample at time n (i.e. x(n)) is a linear combination of previous samples (i.e. x(n-1), x(n-2), 

etc).  One problem with the LPC analysis is that the autoregressive model assumes that the 

signal is stationary.  In speech there are two sources of non-stationarity: the resonances of the 

vocal tract are highly damped, and with each pulse of the voice source new energy is added 

to the signal.  

      The RLPC method used in this paper (based on the Robust Linear Prediction algorithm in 

Lee [1988]) refines LPC by relaxing the assumption of signal stationarity.  RLPC 

downweights the errors introduced by the large-variance impulses in order to provide a 

lower-variance estimate of the LP coefficients, resulting in better source/filter separation as 

well as lower-variance formant and bandwidth estimates. Section 2.2 below contains more 

technical detail about the implementation of the RLPC algorithm. 
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2.  Methodology 

2.1.  Corpus and dataset  

      This study uses data from the Buckeye Corpus of Conversational Speech (Pitt et al, 

2007), which contains 40 speaker's speech of about 300,000 words.  All subjects were local 

residents of Columbus, Ohio, USA.  Each subject was interviewed for about an hour for their 

opinion on various issues in life (without knowing the real purpose of the interview).  The 

subjects were interviewed in one-to-one sessions by the experimenters.  Only the 

interviewees' speech was digitally recorded and phonetically transcribed.  Age and gender 

were balanced among the speakers:  20 speakers were male and 20 were female; 20 were old 

(>40 y.o.) and 20 were young (<= 40 y.o.).  The youngest speakers were in their late teens 

and the oldest were in late seventies.    

      Speech recordings were transcribed both at the word level and at the phoneme level.  The 

onsets and offsets of words and phonemes were labeled by a forced alignment algorithm and 

then hand corrected.  Discourse fillers (e.g. um and uh) as well as nonlinguistic sounds (e.g. 

laughter and coughing) were also included in the transcription.   

      Figure 1 shows two clips of speaker S01’s transcription files, one at the word level and 

the other at the phoneme level.  As shown in Figure 1, Speaker S01 starts pronouncing the 

word “about” when t=345.722s (i.e. when the previous word talk ends) and the word ends at 

t=345.946s.  Instead of pronouncing the word as “ah b aw t”
1
 as in the dictionary, the speaker 

produces “b ah t”, which consists of three phonemes, starting at t=345.722s, 345.785s, 

345.887s, respectively.   

 
    Word-level transcription 

End time word  phonetic transcription 

… 

345.722  talk  t ao k 

    345.946  about  b ah t 

    … 

 Phoneme-level transcription 

End time phoneme   

… 

345.722 k 

345.785 b 

345.887 ah 

345.946 t 

… 

Figure 1. Part of transcription files s0101a.word (upper) and s0101a.phone (lower), of speaker S01.   

 

The current study focuses on the production of ten monophthong vowels (“aa”, “ae”, “ah”, 

“eh”, “ey”, “ih”, “iy”, “ow”, “uh”, “uw”).  Diphthongs “ay”, “aw” and “oy” are excluded 

since their formant patterns are more variable both within the token and across tokens, but 

“ey” and “ow” are included because they are more often pronounced as monophthongs in 

American English. 

      To form the dataset, we first extracted from the corpus all instances of the target vowels 

(based on the transcription, which may or may not match dictionary pronunciations).  Then 

we excluded vowel tokens that were shorter than 40ms for more reliable formant analysis 

(since we were using 30ms window size).  The final dataset contains a total number of 

287,223 vowel tokens.  Table 1 summarizes the number of tokens of each vowel type. 
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Table 1  Average number of tokens per vowel type 

aa ae ah eh ey ih iy ow uh uw 
14745  18654  70587  36380  15056 58064  33614  17645  6054 11423 

 

2.2.  Acoustic analysis 

2.2.1.  Signal preprocessing 

      The speech signal is first downsampled to twice the highest expected formant frequency 

(cf. section 2.2.3) and high-pass filtered with a cutoff at 80 Hz.  It is also preemphasized with 

a first order difference equation as stated in (1).  The preemphasis process will be adjusted in 

the assessment stage (cf. section 2.3.1).   

(1)  )1()()( −×−= nxcnxny , where c is the preemphasis factor 

 

2.2.2.  RLPC analysis 

      Our RLPC algorithm begins with a conventional LPC analysis (30 ms Gaussian window, 

10 ms frame step, LPC order of 6, 8, or 10; cf. section 2.3) and continues with a method for 

refining the coefficients (we use the Iterative Weighted Least Squares method, as suggested 

in Lee [1988]). Lee’s method first scales the residuals of the LPC analysis using a minimax 

estimator (Huber, 1964) , which decreases the weight of the small number of outlier residuals 

while leaving the much larger number of small to moderate residuals unchanged. Then the 

scaled residuals are used to recalculate the LP coefficients with a weighted least squares 

equation (Lee’s equation 3.9, cited in (2)).  
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In this equation S is the sampled data signal, p is the LP order, ɛ is the LP residuals, W is 

Huber's minimax estimating function, a is the autoregressive coefficients, and a
k
 indicates 

the k
th

 iteration of the solution. Hence, the current iteration's LP residuals are multiplied by 

the weighted residuals of the previous iteration. The system of equations defined by (2) is 

converted to matrix form and solved using standard linear algebra (see Lee [1988] for 

details). 

      In theory the refining method can be applied repeatedly, but in practice we found that the 

greatest improvement was in the first pass and using more than two iterations was not very 

useful.  Results presented in the following are based on 2-iteration RLPC analysis. 

 

2.2.3.   Dynamic formant tracking  

      Dynamic formant tracking (Talkin, 1987) is used to find the most likely formant 

trajectories over time, based on the formant frequency candidates at each time step as 

identified by RLPC.  The algorithm works by keeping track of the cost of different 

frequency-to-formant mappings and selecting the one with the lowest cost.  Two types of 

cost are calculated for each mapping: a local cost and a transition cost.   Local cost is based 

on the comparison between formant frequencies in local frames and a predefined expected 

frequencies matrix (we used expected normative values based on Hillenbrand et al, 1995, as 

well as expected minimal and maximal values). The better they match, the lower the cost is.  

Transition cost, on the other hand, is calculated for adjacent frames and penalizes frequency 

changes between frames.  The two costs are combined to give an overall cost, and the 
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frequency-to-formant mapping with the lowest overall cost will be selected (by a modified 

Viterbi algorithm) as the optimal formant trajectory.    

 

2.3.  Parameter optimization 

      The behavior of the above algorithms can be modified by varying a number of input 

parameters.  First of all, the results of formant analysis can be influenced by preprocessing 

parameters, such as downsampling rate and preemphasis of higher-frequency signal 

components.  In the RLPC analysis, the original LP coefficient estimates can be provided by 

either autocorrelation (the one we used) or covariance methods.  One can also vary the order 

of the LPC models (in both the conventional analysis and later coefficients refinement), as 

well as the number of iterations that coefficient refinement will run.   In the dynamic formant 

tracking algorithm, there are more parameters that can vary.  Calculation of the mapping 

costs is dependent on the expected formant frequencies as well as the relative weights of 

different types of penalty (e.g. deviation from expected values, missing formants, formant 

merger, formant change from frame to frame, etc).     

     These parameters constitute a high-dimensional space.  In principle, one can explore the 

entirety of the parameter space to determine the "optimal" parameters, but in practice, this is 

not feasible without a distributed computing grid. It was thus necessary for us to restrict the 

optimization to a parameter subspace in which one expects variation of parameters to have 

the largest impact on formant analyses.   

      In this study, we varied two parameters, preemphasis process and LPC order, to obtain 

optimal formant tracking results for each speaker and vowel.  In the following, we will first 

propose a method for automatically evaluating the goodness of the analysis, and then present 

the optimization results of the two parameters. 

 

2.3.1.  Assessing formant analyses 

      Obviously the most reliable way to assess the success of a formant analysis is to check 

the measurement results against the spectrograms by hand, but this is not possible due to the 

large amount of data.  In practice, we have observed that most of the errors in the formant 

analysis are due to missing formants (e.g. unable to find formant candidates when the signal 

is weak) and misidentification of formants (e.g. wrongly identifying H1 or H2 as F1 in high 

vowels).  In view of this, we adopted an evaluation method which takes into account the 

missing formant rate (i.e. the percentage of frames with missing formants) and the variability 

of the formant measures.  We expect a good formant analysis to be associated with a low 

percentage of missing formants and a relatively low variability in the formant measures (for 

the same vowel type produced by the same speaker).  On top of that, it is also important that 

the analysis overall generate reasonable estimates of formant frequencies.    

      In practice, we have noticed that there is often a trade-off between missing formant rate 

and measurement consistency: when the missing rate is high (sometimes it can be as high as 

50%), the formant measures tend to be less variable because fewer frames with inaccurate 

formant estimates are included in the calculation of variance.  Hence we set an arbitrary 

standard for missing formant rate, that is, any analysis with more than 10% of frames with 

missing formants will be excluded from the running for the optimal analysis.  The rest of the 

optimization process is solely based on variability of measured formants.   

      In order to quantify the variability of formant measures in both dimensions (i.e. F1 and 

F2), we employ a density area metric which is calculated as the area of F1,F2 space that 
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contains 95% of the measurements from all analysis frames.  The smaller this area is, the 

more convergent the formant measures are.  Assuming that the formant measures are 

normally distributed, the 95% contour area of F1,F2 space in theory contains measurements 

that are within two standard deviations away from the mean. We refrain from using a 100% 

contour area in order to avoid the influence of outliers. 

 

2.3.2.   Varying analysis parameters 

      For each speaker/vowel combination, we conduct 3 (types of preemphasis) * 3 (LPC 

orders) = 9 formant analyses. We exclude analyses from consideration which produce more 

than 10% missing frames in either formant.  We then determine the optimal analysis as the 

one with the smallest 95% density area in the F1-F2 space.  The three versions of 

preemphasis filtering are the following: no preemphasis, 6dB/octave emphasis beginning at 

500 Hz (which avoids pre-emphasis of high vowel F1) and 6 dB/octave emphasis beginning 

at 50 Hz (which pre-emphasizes the signal for all formants).  The three LPC orders we use 

are 6, 8, and 10.   According to the conventional wisdom, the order should be 2+2*NF, where 

NF is the number of expected formants in the range of frequencies represented in a signal.  

As mentioned above, the speech signal is downsampled to twice the maximal expected value 

of F2 for a given gender.  Considering within-gender variation in vocal tract geometry as 

well as inter-token variation, NF should equal 2 or 3 in most situations (though it does equal 

4 sometimes).   

      Figure 2 shows an example of how our optimatization metric varies as a function of LPC 

order and preemphasis for two vowels (“aa” and “iy”) of two speakers (S04, female; S06, 

male).  For speaker S04, the optimal analysis for the vowel “aa” is achieved when LPC order 

equals 6 and preemphasis starts at 500Hz, while for “iy”, when LPC order is 6 and there is no 

preemphasis.  On the other hand, for speaker M06, the optimal setting for vowel “aa” is when 

LPC order equals 10 and preemphasis starts at 50Hz, while for vowel “iy”, when LPC order 

equals 6 and there is no preemphasis.  It can be seen from Figure 2 that by using the optimal 

parameter setting, the 95% contour area can be reduced by about 20 to 30kHz
2
.    

      Table 2 summarizes the number of subjects with the corresponding optimal parameter 

setting. An ordered (multinomial) logistic regression on optimal LPC order reveals 

significant effects of speaker gender (p=0.03) and vowel frontness (p<0.001).  Generally 

speaking, male speakers tend to favor higher LPC orders than female speakers, while back 

vowels also favor higher LPC orders than front vowels.   However, an ordered logistic 

regression on optimal preemphasis factor shows no effects of gender, vowel height or vowel 

frontness (p>0.2 in all cases). 
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Figure 2. Parameter optimization based on 95% density areas (in F1-F2 space).  The lines denote the 

optimization contours of different values of LPC order.  X-axis represents preemphasis setting.  Y-

axis is the corresponding 95% density areas in kHz
2
. Upper: Speaker S04’s vowel “aa” (left) and “iy” 

(right); Lower: Speaker S06’s vowel “aa” (left) and “iy” (right) 

 
Table 2  Distribution of optimal preemphasis setting and LPC order among subjects 

Female speakers 

  aa ae ah eh ey ih iy ow uh uw 

Optimal 

preemphasis  

none 9* 7 4 14 8 6 7 4 12 11 

50Hz 7 10 8 2 6 10 9 14 6 7 

500Hz 4 3 8 4 6 4 4 2 2 2 

Optimal LPC 

order 

6 14 2 0 5 16 7 15 2 5 5 

8 2 11 11 9 4 2 2 6 3 6 

10 4 7 9 6 0 11 3 12 12 9 

Male speakers 

  aa ae ah eh ey ih iy ow uh uw 

Optimal 

preemphasis  

none 8 11 7 12 3 1 7 8 5 3 

50Hz 10 4 9 4 16 19 11 6 15 13 

500Hz 2 5 4 4 1 0 2 6 0 4 

Optimal LPC 

order 

6 8 6 5 4 7 7 11 3 0 2 

8 1 6 6 5 6 5 7 4 6 11 

10 11 8 9 11 7 8 2 13 14 7 

 

* The values in the cells indicate the number of speakers with the corresponding optimal preemphasis 

and LPC order. 
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3.  Results  

3.1   Average durations and formant frequencies 

      Table 3 shows the average values of vowel duration and the first two formant frequencies, 

separated by gender and vowel type.  The numbers represent the mean of individual 

speakers’ mean values over all tokens.  Figures 3(a) and 3(b) plot the average vowel space of 

each individual speaker, grouped by gender.  For better resolution,  the six tense vowels (“iy”, 

“ey”, “ae”, “aa”, “ow” and “uw”) are plotted separately from the lax vowels (“ih”, “eh”, “ah” 

and “uh”) on the vowel chart.  

  
Table 3  Average duration (ms) and formant frequencies in men and women 

  aa ae ah eh Ey ih iy ow uh Uw 

Dur (ms)  w 117 139 86 88 126 69 98 144 68 108 

m 109 131 87 86 121 68 91 130 67 102 

F1 (Hz) w 760 743 615 625 494 455 397 614 500 441 

m 644 629 548 535 451 432 350 522 456 399 

F2  (Hz) w 1342 1803 1442 1847 2296 1967 2408 1466 1556 975 

m 1255 1676 1350 1689 1857 1745 2182 1193 1426 867 

 

 

 

Figure 3(a).  Average vowel formants of tense (left) and lax (right) vowels in female speakers.  Each 

polygon represents an individual speaker. 
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Figure 3(b).  Average vowel formants of tense (left) and lax (right) vowels in male speakers.  Each 

polygon represents an individual speaker. 

3.2.  Inter-speaker variation 

      Generally speaking, female speakers produce slightly longer vowels than male speakers 

(p=0.009).  As expected, they also have higher formant frequencies compared to male 

speakers (p<0.001 for F1, p=0.002 for F2).  More importantly, as can be seen from Figure 3, 

on average female speakers have a much larger vowel space than male speakers.  This is also 

consistent with previous findings (Byrd, 1994).  Both longer duration and more expanded 

vowel space are indicators of clear speech (Bradlow et al., 1996), which suggests that female 

speakers produce clearer speech than male speakers.    

      In both genders, individual differences in average formant values are not big – in most 

cases, the standard deviation across speakers is below 100 Hz (cf. Table 4).   

 
Table 4    Inter-speaker differences in average formant frequencies in men and women 

 aa ae ah eh ey ih iy ow uh uw 

s.d. in mean F1 

(Hz)  

w 53 35 39 45 41 31 47 55 37 31 

m 54 60 35 29 48 33 20 23 39 18 

s.d. in mean F2 

(Hz) 

w 76 40 30 44 100 56 96 87 107 57 

m 60 57 49 45 127 122 76 91 133 60 

 

3.3.  Within-speaker variation 

      The current optimization method assumes that a good formant analysis (i.e. one with 

fewer dropped frames and less variability) should give a reasonably high degree of coherence 

when measuring the same vowel of the same speaker.   However, how much of within-

speaker variability we should expect is a tricky question.  In fact, as mentioned in the 
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introduction, within-speaker allophonic variation is one of the major research topics that 

speech corpora are used to investigate.  In this exploratory work, we use 95% density area in 

F1/F2 space to measure formant consistency, where all analysis frames are taken into 

consideration.  Based on the optimal parameter setting (which gives the smallest contour 

areas), the standard deviation in formant measures for each speaker/vowel combination is 

around 100 Hz in F1 and between 150 – 350 Hz in F2 (cf. Table 5). 

 
Table 5    Average within-speaker variation in formant frequencies in men and women 

 aa ae ah eh ey ih iy ow uh uw 

Mean s.d. in F1 

(Hz)  

w 95 111 115 102 82 79 66 140 72 67 

m 84 91 91 85 90 118 57 76 137 58 

Mean s.d. in F2 

(Hz) 

w 173 137 178 159 228 225 241 358 268 135 

m 163 139 151 165 220 273 216 222 326 144 

 

3.4.  Comparing with single word production 

      Hillenbrand et al (1995) reported vowel formants in men, women and children in single 

word reading.  Their talkers consisted of 45 men, 48 women, and 46 children aged 10 to 12 

(27 boys, 19 girls). Most of the talkers (87%) were from Michigan, and the remainder were 

from other areas in the midwest.  Recordings were made of the subjects reading lists of /hVd/ 

words, with twelve different vowels.  In addition to the ten vowels that are investigated in the 

current study, Hillenbrand et al. also recorded the vowel “ao” (as in the word caught when a 

caught-cot distinction is preserved) and the vowel “er” (as in bird).  Hillenbrand et al.’s 

measurement provides reference points for later studies on vowel formant frequencies.  It 

also forms the basis of the expected formant frequencies used in the formant tracking 

algorithm of the current study.  In this section, we compare our measurement results with 

those in Hillenbrand et al (for men and women only; cf. Table 6).   

 
Table 6   Average durations and F1/F2 formant values of ten vowels of men and women in word 

reading experiments in Hillenbrand et al’s study 

  aa ae ah eh ey ih iy ow uh uw 

Dur (ms)  w 323 332 226 254 320 237 306 326 249 303 

m 267 278 188 189 267 192 243 265 192 237 

F1 (Hz) w 936 669 753 731 536 483 437 555 519 459 

m 768 588 623 580 476 427 342 497 469 378 

F2  (Hz) w 1551 2349 1426 2058 2530 2365 2761 1035 1225 1105 

m 1333 1952 1200 1799 2089 2034 2322 910 1122 997 

 

Compared with the current results, vowels in Hillenbrand et al.’s results are significantly 

longer (p<0.001 for both men and women), in fact, almost twice as long (mean vowel 

duration in the current study is 102 ms; mean vowel duration in Hillenbrand et al. is 259ms).  

Similar to the current results, there is a significant gender difference (p<0.001) in vowel 

duration, in that female speakers produce longer vowels (mean = 287ms) than male speakers 

(mean = 231ms).  

      On the other hand, formant measures in Hillenbrand et al.’s do not reliably differ from 

the current measures (p>0.1 for both F1 and F2, in both men and women), partly because we 

used Hillenbrand et al.’s measures to form the expected frequencies matrix in dynamic 

formant tracking.  However, as shown in Figure 4, the current measurement does reveal a 

less expanded vowel space for both men and women, compared with Hillenbrand et al.’s 
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results.  This is not surprising given the great difference in vowel duration, since we know 

that longer vowels tend to have more extreme formant values than shorter vowels (“duration-

dependent vowel undershoot/overshoot”; Moon and Lindblom, 1994).   Together, the 

differences in both duration and vowel space expansion are consistent with the general 

consensus that isolated word production is featured by hyperarticulation whereas 

spontaneous speech contains a lot more phonetic reduction.  We also speculate that the 

current results contain wider ranges of within-speaker variation than earlier results, because 

of the nature of the speech task as well as the variability of phonetic context in spontaneous 

speech.  But a direct comparison is not available due to the lack of information about within-

speaker variation in Hillenbrand et al. 
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Figure 4.  Comparing average values of F1 and F2 in the current study and in Hillenbrand et al. 

4.  Conclusion 

      To conclude, in this paper, we present an exploratory study on automatic vowel formant 

analysis using data from speech corpora.  We use both robust LPC and dynamic formant 

tracking to automatically locate vowel formants in transcribed speech.  We also explore the 

optimization of the automatic analysis by varying two parameters, the preemphasis process 

and the order of the LPC models.  The resulting formant measures are consistent with 

previous findings on vowel targets in American English as well as gender difference in 

speech production.  In our future work, we plan to further this study by investigating in more 

depth the evaluation and optimization of the current formant analysis.   

      Our long term goal in this line of research is to develop an automatic formant analysis 

that remains accurate and effective in presence of the variability in natural speech. Such an 

analysis will achieve reliable formant measures across speakers, vowels and contexts, and 

provide valuable data for research on individual differences, phonetic variation and 

coarticulation.  In addition, for each vowel token, it measures the formant trajectories over 

time, which goes beyond the average (or midpoint) values and allows researchers to 

investigate the time course of the phonetic processes.   

 

Notes 
1. The Buckeye corpus uses DARPA phonetic alphabet in the transcription.  In accordance, the same alphabet is 

used in this paper to refer to sounds.  See the appendix for a table with both DARPA symbols and the 

corresponding IPA symbols. 
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Appendix  

Symbols for vowels in Darpa Phonetic Alphabet 

Darpa alphabet IPA symbol Example 

aa ɑ cot 

ae æ bat 

ah ə but 

eh ɛ bet 

ey e bait 

ih ɪ bit 

iy i beat 

ow o boat 

uh ʊ put 

uw u boot 

ay ɑj bite 

aw ɑw now 

oy ɔj boy 

ao ɔ bought 

er ɚ bird 
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